Developmental regulation of neurotransmitter phenotype through tetrahydrobiopterin.

نویسندگان

  • Beth A Habecker
  • Michael G Klein
  • Nathan C Sundgren
  • Wei Li
  • William R Woodward
چکیده

During development, sympathetic neurons innervating rodent sweat glands undergo a target-induced change in neurotransmitter phenotype from noradrenergic to cholinergic. Although the sweat gland innervation in the adult mouse is cholinergic and catecholamines are absent, these neurons continue to express tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. The developmental suppression of noradrenergic function in these mouse sympathetic neurons is not well understood. We investigated whether the downregulation of the enzyme aromatic l-amino acid decarboxylase (AADC) or the TH cofactor tetrahydrobiopterin (BH4) could account for the loss of catecholamines in these neurons. AADC levels did not decrease during development, and adult cholinergic sympathetic neurons were strongly immunoreactive for AADC. In contrast, BH4 levels dropped significantly in murine sweat gland-containing footpads during the time period when the gland innervation was switching from making norepinephrine to acetylcholine. Immunoreactivity for the rate-limiting BH4 synthetic enzyme GTP cyclohydrolase (GCH) became undetectable in the sweat gland neurons during this phenotypic conversion, suggesting that sweat glands reduce BH4 levels by suppressing GCH expression during development. Furthermore, extracts from sweat gland-containing footpads suppressed BH4 in cultured mouse sympathetic neurons, and addition of the BH4 precursor sepiapterin rescued catecholamine production in neurons treated with footpad extracts. Together, these results suggest that the mouse sweat gland-derived cholinergic differentiation factor functionally suppresses the noradrenergic phenotype during development by inhibiting production of the TH cofactor, BH4. These data also indicate that GCH expression, which is often coordinately regulated with TH expression, can be controlled independently of TH during development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetrahydrobiopterin biosynthesis as an off-target of sulfa drugs.

The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structure...

متن کامل

Organic acid concentrations in amniotic fluid found in normal and Down syndrome pregnancies.

INTRODUCTION Organic acids were examined from normal and Down syndrome pregnancies to identify possible differences between the amniotic fluid from fetuses with Down Syndrome compared with that of normal fetuses. MATERIALS AND METHODS Amniotic fluids were obtained from prior amniocenteses. Forty-one normal and 22 Down syndrome specimens were assayed using gas chromatography/mass spectrometry....

متن کامل

Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects.

Tetrahydrobiopterin (H4-biopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, i.e. the hydroxylases of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan, of ether lipid oxidase, and of the three nitric oxide synthase (NOS) isoenzymes. As a consequence, H4-biopterin plays a key role in a vast number of biological processes and path...

متن کامل

Tetrahydrobiopterin regulates monoamine neurotransmitter sulfonation.

Monoamine neurotransmitters are among the hundreds of signaling small molecules whose target interactions are switched "on" and "off" via transfer of the sulfuryl-moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and amines of their scaffolds. These transfer reactions are catalyzed by a small family of broad-specificity enzymes-the human cytosolic sulfotransferase...

متن کامل

Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy

Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 21  شماره 

صفحات  -

تاریخ انتشار 2002